Sequentially Cohen-Macaulay Rees modules

Naoki Taniguchi

Meiji University

Joint work with T. N. An, N. T. Dung and T. T. Phuong

at Purdue University

October 29, 2014

(3)

47 ▶

Introduction

[CGT]

N. T. Cuong, S. Goto and H. L. Truong, *The equality* $I^2 = \mathfrak{q}I$ *in sequentially Cohen-Macaulay rings*, J. Algebra, **(379)** (2013), 50-79.

In [CGT],

• Characterized the sequentially Cohen-Macaulayness of $\mathcal{R}(I)$ where I is an m-primary ideal which contains a good parameter ideal as a reduction. ([Theorem 5.3]).

Question 1.1

When is the Rees module $\mathcal{R}(\mathcal{M})$ sequentially Cohen-Macaulay?

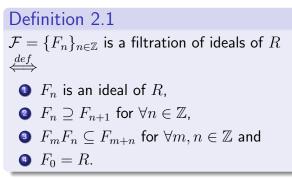
(日) (同) (三) (三)

Contents

- Introduction
- 2 Filtration
- Survey on sequentially Cohen-Macaulay modules
- Main results
- Sequentially Cohen-Macaulay property in E^{\natural}
- O Application –Stanley-Reisner algebras–

Filtration

Let R be a commutative ring.



Then we put

$$\mathcal{R} = \mathcal{R}(\mathcal{F}) = \sum_{n \ge 0} F_n t^n \subseteq R[t], \quad \mathcal{R}' = \mathcal{R}'(\mathcal{F}) = \sum_{n \in \mathbb{Z}} F_n t^n \subseteq R[t, t^{-1}].$$

Let M be an R-module.

Definition 2.2 $\mathcal{M} = \{M_n\}_{n \in \mathbb{Z}}$ is an \mathcal{F} -filtration of R-submodules of M $\stackrel{def}{\longleftrightarrow}$

•
$$M_n$$
 is an R -submodule of M ,

$$M_n \supseteq M_{n+1} \text{ for } \forall n \in \mathbb{Z},$$

•
$$F_m M_n \subseteq M_{m+n}$$
 for $\forall m, n \in \mathbb{Z}$ and

$$M_0 = M.$$

We set

$$\mathcal{R}(\mathcal{M}) = \sum_{n \ge 0} t^n \otimes M_n \subseteq R[t] \otimes_R M,$$

$$\mathcal{R}'(\mathcal{M}) = \sum_{n \in \mathbb{Z}} t^n \otimes M_n \subseteq R[t, t^{-1}] \otimes_R M.$$

Here

$$t^n \otimes M_n = \{t^n \otimes x \mid x \in M_n\} \subseteq R[t, t^{-1}] \otimes_R M$$

for $\forall n \in \mathbb{Z}$.

If $F_1 \neq R$, then we put

$$\mathcal{G} = \mathcal{G}(\mathcal{F}) = \mathcal{R}'/u\mathcal{R}', \quad \mathcal{G}(\mathcal{M}) = \mathcal{R}'(\mathcal{M})/u\mathcal{R}'(\mathcal{M})$$

where $u = t^{-1}$.

3

<ロ> (日) (日) (日) (日) (日)

For the rest of this section, we assume $F_1 \neq R$.

Lemma 2.3 Suppose R is Noetherian and M is finitely generated. Then TFAE. (1) R(M) is a finitely generated graded R-module. (2) R'(M) is a finitely generated graded R'-module. (3) ∃n₁, n₂, ..., n_ℓ ≥ 0 (ℓ > 0) s.t. M_n = ∑^ℓ_{i=1} F_{n-n_i}M_{n_i} for ∀n ≥ max{n₁, n₂, ..., n_ℓ}.

通 ト イヨ ト イヨト

• The composite map

$$\psi: \mathcal{R}(\mathcal{M}) \stackrel{i}{\longrightarrow} \mathcal{R}'(\mathcal{M}) \stackrel{\varepsilon}{\longrightarrow} \mathcal{G}(\mathcal{M})$$

is surjective and

• $\operatorname{Ker} \psi = u\mathcal{R}'(\mathcal{M}) \cap \mathcal{R}(\mathcal{M}) = u[\mathcal{R}(\mathcal{M})]_+,$ where $[\mathcal{R}(\mathcal{M})]_+ = \sum_{n>0} t^n \otimes M_n.$

3

A D A D A D A

Assumption 2.4

- $\mathcal{R}(\mathcal{F})$ a Noetherian ring
- $\bullet~\mathcal{R}(\mathcal{M})$ a finitely generated $\mathcal{R}\text{-module}$

Then R is Noetherian and M is finitely generated.

(4) (2) (4) (3)

Proposition 2.5

The following assertions hold true. (1) Let $P \in \operatorname{Ass}_{\mathcal{R}} \mathcal{R}(\mathcal{M})$. Then $\mathfrak{p} \in \operatorname{Ass}_{R} M$, $P = \mathfrak{p}R[t] \cap \mathcal{R}$ and $\dim \mathcal{R}/P = \begin{cases} \dim R/\mathfrak{p} + 1 & \text{if } \dim R/\mathfrak{p} < \infty, F_{1} \nsubseteq \mathfrak{p}, \\ \dim R/\mathfrak{p} & \text{otherwise}, \end{cases}$ where $\mathfrak{p} = P \cap R$. (2) Suppose $M \neq (0), d = \dim_{R} M < \infty$ and $\exists \mathfrak{p} \in \operatorname{Ass}_{R} M$ s.t.

 $\dim R/\mathfrak{p} = d, \ F_1 \nsubseteq \mathfrak{p}. \ Then \ \dim_{\mathcal{R}} \mathcal{R}(\mathcal{M}) = d+1.$

イロト イポト イヨト イヨト 二日

Let $P \in \operatorname{Ass}_{\mathcal{R}} \mathcal{R}(\mathcal{M})$. Then $P \in \operatorname{Ass}_{\mathcal{R}} R[t] \otimes_{R} M$, so that (1) $P = Q \cap \mathcal{R}$ for some

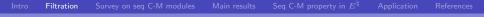
$$Q \in \operatorname{Ass}_{R[t]} R[t] \otimes_R M = \bigcup_{\mathfrak{p} \in \operatorname{Ass}_R M} \operatorname{Ass}_{R[t]} R[t]/\mathfrak{p}R[t].$$

Thus $\mathfrak{p} = Q \cap R$ and $Q = \mathfrak{p}R[t]$ for $\exists \mathfrak{p} \in \operatorname{Ass}_R M$. Therefore

$$P = \mathfrak{p}R[t] \cap \mathcal{R}, \ \mathfrak{p} = P \cap R.$$

Let $\overline{R} = R/\mathfrak{p}$. Then $\overline{\mathcal{F}} = \{F_n \overline{R}\}_{n \in \mathbb{Z}}$ is a filtration of ideals of \overline{R} and $\mathcal{R}/P \cong \mathcal{R}(\overline{\mathcal{F}})$

as graded R-algebras.



Corollary 2.6

Suppose R is local, $M \neq (0)$. Then

 $\dim_{\mathcal{R}} \mathcal{R}(\mathcal{M}) = \begin{cases} d+1 \text{ if } \exists \mathfrak{p} \in \operatorname{Ass}_{R} M \text{ s.t. } \dim R/\mathfrak{p} = d, F_{1} \nsubseteq \mathfrak{p}, \\ d \text{ otherwise}, \end{cases}$

where $d = \dim_R M$.

Proposition 2.7

The following assertions hold true.

(1) Let $P \in \operatorname{Ass}_{\mathcal{R}'} \mathcal{R}'(\mathcal{M})$. Then $\mathfrak{p} \in \operatorname{Ass}_R M$, $P = \mathfrak{p}R[t, t^{-1}] \cap \mathcal{R}'$ and $\dim \mathcal{R}'/P = \dim R/\mathfrak{p} + 1$, where $\mathfrak{p} = P \cap R$.

(2) Suppose $M \neq (0)$. Then $\dim_{\mathcal{R}'} \mathcal{R}'(\mathcal{M}) = \dim_R M + 1$.

イロト 不得 トイヨト イヨト ニヨー

Lemma 2.8

Suppose that R is a local ring, $M \neq (0)$. Then $\mathcal{G}(\mathcal{M}) \neq (0)$ and $\dim_{\mathcal{G}} \mathcal{G}(\mathcal{M}) = \dim_{R} M$.

Proof.

Let \mathfrak{N} be a unique graded maximal ideal of an H-local ring \mathcal{R}' . Then $\mathcal{R}'(\mathcal{M})_{\mathfrak{N}} \neq (0)$ and $u \in \mathfrak{N}$. Therefore $\mathcal{G}(\mathcal{M})_{\mathfrak{N}} \neq (0)$, so that $\mathcal{G}(\mathcal{M}) \neq (0)$. Hence $\dim_{\mathcal{G}} \mathcal{G}(\mathcal{M}) = \dim_{R} M$.

3

Survey on sequentially C-M modules

Let R be a Noetherian ring and $M \neq (0)$ a finitely generated *R*-module with $d = \dim_{R} M < \infty$. We put

$$\operatorname{Assh}_R M = \{ \mathfrak{p} \in \operatorname{Supp}_R M \mid \dim R/\mathfrak{p} = d \}.$$

Then $\forall n \in \mathbb{Z}$, $\exists M_n$ the largest *R*-submodule of *M* with $\dim_R M_n \leq n$. Let

$$\begin{aligned} \mathcal{S}(M) &= \{ \dim_R N \mid N \text{ is an } R\text{-submodule of } M, N \neq (0) \} \\ &= \{ \dim R/\mathfrak{p} \mid \mathfrak{p} \in \operatorname{Ass}_R M \} \\ &= \{ d_1 < d_2 < \dots < d_{\ell} = d \} \end{aligned}$$

where $\ell = \sharp \mathcal{S}(M)$.

Let $D_i = M_{d_i}$ for $1 \leq \forall i \leq \ell$. We then have a filtration

$$\mathcal{D}: D_0 := (0) \subsetneq D_1 \subsetneq D_2 \subsetneq \ldots \subsetneq D_\ell = M$$

which we call <u>the dimension filtration of M</u>. Put $C_i = D_i/D_{i-1}$ for $1 \leq \forall i \leq \ell$.

Definition 3.1 ([Sch, St])

3

イロト 不得下 イヨト イヨト

Let

$$(0) = \bigcap_{\mathfrak{p} \in \operatorname{Ass}_R M} M(\mathfrak{p})$$

be a primary decomposition of (0) in M, where $\operatorname{Ass}_R M/M(\mathfrak{p}) = \{\mathfrak{p}\}$ for $\forall \mathfrak{p} \in \operatorname{Ass}_R M$.

Fact 3.2 ([Sch])

The following assertions hold true. (1) $D_i = \bigcap_{\dim R/\mathfrak{p} \ge d_{i+1}} M(\mathfrak{p})$ for $0 \le \forall i < \ell$. (2) $\operatorname{Ass}_R C_i = \{\mathfrak{p} \in \operatorname{Ass}_R M \mid \dim R/\mathfrak{p} = d_i\}$ and $\operatorname{Ass}_R D_i = \{\mathfrak{p} \in \operatorname{Ass}_R M \mid \dim R/\mathfrak{p} \le d_i\}$ for $1 \le \forall i \le \ell$.

Theorem 3.3 ([GHS])

Let $\mathcal{M} = \{M_i\}_{0 \le i \le t}$ (t > 0) be a family of R-submodules of M s.t. (1) $M_0 = (0) \subsetneq M_1 \subsetneq M_2 \subsetneq \ldots \subsetneq M_t = M$ and (2) $\dim_R M_{i-1} < \dim_R M_i$ for $1 \le \forall i \le t$. Assume that $\operatorname{Ass}_R M_i/M_{i-1} = \operatorname{Assh}_R M_i/M_{i-1}$ for $1 \le \forall i \le t$. Then $t = \ell$ and $M_i = D_i$ for $0 \le \forall i \le \ell$.

17 / 49

Proposition 3.4 (NZD characterization)

Let (R, \mathfrak{m}) be a Noetherian local ring, $M \neq (0)$ a finitely generated R-module. Let $x \in \mathfrak{m}$ be a NZD on M. Then TFAE.

- (1) M is a sequentially C-M R-module.
- (2) M/xM is a sequentially C-M R/(x)-module and $\{D_i/xD_i\}_{0 \le i \le \ell}$ is the dimension filtration of M/xM.

Proof.

Since $x \in \mathfrak{m}$ is a NZD on C_i and on D_i for $1 \leq \forall i \leq \ell$, so that we get a filtration

$$D_0/xD_0 = (0) \subsetneq D_1/xD_1 \subsetneq \cdots \subsetneq D_\ell/xD_\ell = M/xM.$$

★ 博 ▶ | ★ 臣 ▶

Remark 3.5

The implication $(2) \Rightarrow (1)$ is not true without the condition that $\{D_i/xD_i\}_{0 \le i \le \ell}$ is the dimension filtration of M/xM.

For example, let R be a 2-dimensional Noetherian local domain of depth 1 (Nagata's bad example). Then R/(x) is sequentially C-M for $x \neq 0$, but R is not sequentially C-M.

This example shows that [Sch, Theorem 4.7] is not true in general.

Main results

Notation 4.1

- (R, \mathfrak{m}) a Noetherian local ring
- $M \neq (0)$ a finitely generated *R*-module with $d = \dim_R M$
- $\mathcal{F} = \{F_n\}_{n \in \mathbb{Z}}$ a filtration of ideals of R s.t. $F_1 \neq R$
- $\mathcal{M} = \{M_n\}_{n \in \mathbb{Z}}$ an \mathcal{F} -filtration of R-submodules of M
- $\mathfrak{a} = \mathcal{R}(\mathcal{F})_+ = \sum_{n>0} F_n t^n$
- $\bullet \ \mathfrak{M}$ a unique graded maximal ideal of $\mathcal R$
- $\mathcal{R} = \mathcal{R}(\mathcal{F})$ a Noetherian ring
- $\mathcal{R}(\mathcal{M})$ a finitely generated $\mathcal{R}\text{-module}$

Let $1 \leq i \leq \ell$. We set

$$\mathcal{D}_i = \{M_n \cap D_i\}_{n \in \mathbb{Z}}, \ \mathcal{C}_i = \{[(M_n \cap D_i) + D_{i-1}]/D_{i-1}\}_{n \in \mathbb{Z}}.$$

Then \mathcal{D}_i (resp. \mathcal{C}_i) is an \mathcal{F} -filtration of R-submodules of D_i (resp. C_i). Look at the exact sequence

$$0 \to [\mathcal{D}_{i-1}]_n \to [\mathcal{D}_i]_n \to [\mathcal{C}_i]_n \to 0$$

of R-modules for $\forall n \in \mathbb{Z}$. We then have

$$0 \to \mathcal{R}(\mathcal{D}_{i-1}) \to \mathcal{R}(\mathcal{D}_i) \to \mathcal{R}(\mathcal{C}_i) \to 0$$
$$0 \to \mathcal{R}'(\mathcal{D}_{i-1}) \to \mathcal{R}'(\mathcal{D}_i) \to \mathcal{R}'(\mathcal{C}_i) \to 0 \text{ and}$$
$$0 \to \mathcal{G}(\mathcal{D}_{i-1}) \to \mathcal{G}(\mathcal{D}_i) \to \mathcal{G}(\mathcal{C}_i) \to 0.$$

3

< 回 ト < 三 ト < 三 ト

Theorem 4.2

TFAE.

- (1) $\mathcal{R}'(\mathcal{M})$ is a sequentially C-M \mathcal{R}' -module.
- (2) $\mathcal{G}(\mathcal{M})$ is a sequentially C-M \mathcal{G} -module and $\{\mathcal{G}(\mathcal{D}_i)\}_{0 \le i \le \ell}$ is the dimension filtration of $\mathcal{G}(\mathcal{M})$.

When this is the case, M is a sequentially C-M R-module.

Theorem 4.3

Suppose that M is a sequentially C-M R-module and $F_1 \not\subseteq \mathfrak{p}$ for $\forall \mathfrak{p} \in \operatorname{Ass}_R M$. Then TFAE.

- (1) $\mathcal{R}(\mathcal{M})$ is a sequentially C-M \mathcal{R} -module.
- (2) $\mathcal{G}(\mathcal{M})$ is a sequentially C-M \mathcal{G} -module, $\{\mathcal{G}(\mathcal{D}_i)\}_{0 \le i \le \ell}$ is the dimension filtration of $\mathcal{G}(\mathcal{M})$ and $a(\mathcal{G}(\mathcal{C}_i)) < 0$ for $1 \le \forall i \le \ell$.

When this is the case, $\mathcal{R}'(\mathcal{M})$ is a sequentially C-M $\mathcal{R}'\text{-module}.$

Lemma 4.4 (cf. [CGT])

 $\{\mathcal{R}'(\mathcal{D}_i)\}_{0 \leq i \leq \ell}$ is the dimension filtration of $\mathcal{R}'(\mathcal{M})$. If $F_1 \not\subseteq \mathfrak{p}$ for $\forall \mathfrak{p} \in \operatorname{Ass}_R M$, then $\{\mathcal{R}(\mathcal{D}_i)\}_{0 \leq i \leq \ell}$ is the dimension filtration of $\mathcal{R}(\mathcal{M})$.

Proof.

Look at the filtration

$$\mathcal{R}'(\mathcal{D}_0) = (0) \subsetneq \mathcal{R}'(\mathcal{D}_1) \subsetneq \mathcal{R}'(\mathcal{D}_2) \subsetneq \cdots \subsetneq \mathcal{R}'(\mathcal{D}_\ell) = \mathcal{R}'(\mathcal{M}).$$

Then $\dim_{\mathcal{R}'} \mathcal{R}'(\mathcal{D}_i) = d_i + 1$. Let $P \in \operatorname{Ass}_{\mathcal{R}'} \mathcal{R}'(\mathcal{C}_i)$. Then we have

$$\dim \mathcal{R}'/P = d_i + 1 = \dim_{\mathcal{R}'} \mathcal{R}'(\mathcal{C}_i)$$

by Proposition 2.7. Therefore $\{\mathcal{R}'(\mathcal{D}_i)\}_{0 \le i \le \ell}$ is the dimension filtration of $\mathcal{R}'(\mathcal{M})$.

Proof of Theorem 4.2

Look at the exact sequence

$$0 \to \mathcal{R}'(\mathcal{C}_i) \to R[t, t^{-1}] \otimes_R C_i \to X \to 0$$

of graded \mathcal{R}' -modules for $1 \leq i \leq \ell$.

Since $\mathcal{R}'(\mathcal{C}_i)$ is C-M and $X_u = (0)$, we have $R[t, t^{-1}] \otimes_R C_i$ is C-M.

Therefore M is sequentially C-M, because C_i is C-M.

< 同 ト く ヨ ト く ヨ ト

24 / 49

Towards a proof of Theorem 4.3

Fact 4.5 ([F])

Let I be an ideal of R and $t \in \mathbb{Z}$. Consider the following two conditions.

(1)
$$\exists \ell > 0 \text{ s.t. } I^{\ell} \cdot \mathrm{H}^{i}_{\mathfrak{m}}(M) = (0) \text{ for } \forall i \neq t.$$

(2) $M_{\mathfrak{p}}$ is a C-M $R_{\mathfrak{p}}$ -module and $t = \dim_{R_{\mathfrak{p}}} M_{\mathfrak{p}} + \dim R/\mathfrak{p}$ for $\forall \mathfrak{p} \in \operatorname{Supp}_{R} M$ but $\mathfrak{p} \not\supseteq I$.

Then the implication $(1) \Rightarrow (2)$ holds true. The converse holds, if R is a homomorphic image of a Gorenstein local ring.

3

Lemma 4.6 (Key lemma)

Suppose that $\mathrm{H}^{i}_{\mathfrak{M}}(\mathcal{G}(\mathcal{M}))$ is finitely graded for $\forall i \neq d$. Then $\mathrm{H}^{i}_{\mathfrak{M}}(\mathcal{R}(\mathcal{M}))$ is finitely graded for $\forall i \neq d+1$.

Proof of Lemma 4.6

It is enough to show that

$$\exists \ell > 0 \text{ s.t. } \mathfrak{a}^{\ell} \cdot \mathrm{H}^{i}_{\mathfrak{M}}(\mathcal{R}(M)) = (0) \text{ for } i \neq d+1.$$

To see this, let $P \in \operatorname{Supp}_{\mathcal{R}} \mathcal{R}(M)$ s.t. $P \not\supseteq \mathfrak{a}$ and $P \subseteq \mathfrak{M}$.

Put $L = u\mathfrak{a} = u\mathcal{R}' \cap \mathcal{R}$.

イロト 不得下 イヨト イヨト

Proof of Lemma 4.6

Fact 4.7

 $\sqrt{P^* + L} \not\supseteq \mathfrak{a}.$

Therefore $\exists Q \in \operatorname{Min}_{\mathcal{R}} \mathcal{R}/[P^* + L]$ s.t $\mathfrak{a} \not\subseteq Q \subseteq \mathfrak{M}$. Then we can show that $\mathcal{G}(\mathcal{M})_Q$ is C-M,

$$d = \dim_{\mathcal{R}_Q} \mathcal{G}(\mathcal{M})_Q + \dim \mathcal{R}_{\mathfrak{M}}/Q\mathcal{R}_{\mathfrak{M}}.$$

Hence $\mathcal{R}(\mathcal{M})_Q$ is C-M and

$$d+1 = \dim_{\mathcal{R}_Q} \mathcal{R}(\mathcal{M})_Q + \dim \mathcal{R}_{\mathfrak{M}}/Q\mathcal{R}_{\mathfrak{M}}.$$

3

Proof of Lemma 4.6

Since $P^* \subseteq Q$, $\mathcal{R}(M)_{P^*}$ is C-M, so is $\mathcal{R}(M)_P$. We also have

 $d+1 = \dim_{\mathcal{R}_P} \mathcal{R}(M)_P + \dim \mathcal{R}_{\mathfrak{M}}/P\mathcal{R}_{\mathfrak{M}}.$

Thanks to Fact 4.5, $\exists \ell > 0$ s.t.

$$\mathfrak{a}^{\ell} \cdot \mathrm{H}^{i}_{\mathfrak{M}}(\mathcal{R}(\mathcal{M})) = (0) \text{ for } i \neq d+1$$

which shows $\mathrm{H}^{i}_{\mathfrak{M}}(\mathcal{R}(\mathcal{M}))$ is finitely graded.

3

・ 同 ト ・ ヨ ト ・ ヨ ト

We set

$$\mathbf{a}(N) = \max\{n \in \mathbb{Z} \mid [\mathbf{H}^t_{\mathfrak{M}}(N)]_n \neq (0)\}$$

for a finitely generated graded \mathcal{R} -module N of dimension t, and call it *the a-invariant of* N ([GW]).

Theorem 4.8 *TFAE.* (1) $\mathcal{R}(\mathcal{M})$ is a C-M \mathcal{R} -module and $\dim_{\mathcal{R}} \mathcal{R}(\mathcal{M}) = d + 1$. (2) $\operatorname{H}^{i}_{\mathfrak{M}}(\mathcal{G}(\mathcal{M})) = [\operatorname{H}^{i}_{\mathfrak{M}}(\mathcal{G}(\mathcal{M}))]_{-1}$ for $\forall i < d$ and $\operatorname{a}(\mathcal{G}(\mathcal{M})) < 0$. *When this is the case,* $[\operatorname{H}^{i}_{\mathfrak{M}}(\mathcal{G}(\mathcal{M}))]_{-1} \cong \operatorname{H}^{i}_{\mathfrak{m}}(\mathcal{M})$ for $\forall i < d$.

- 4 目 ト - 4 日 ト - 4 日 ト

3

29 / 49

Corollary 4.9

Suppose that M is a C-M R-module. Then TFAE. (1) $\mathcal{R}(\mathcal{M})$ is a C-M \mathcal{R} -module and $\dim_{\mathcal{R}} \mathcal{R}(\mathcal{M}) = d + 1$. (2) $\mathcal{G}(\mathcal{M})$ is a C-M \mathcal{G} -module and $a(\mathcal{G}(\mathcal{M})) < 0$.

< 回 ト < 三 ト < 三 ト

3

Theorem 4.3

Suppose that M is a sequentially C-M R-module and $F_1 \nsubseteq \mathfrak{p}$ for $\forall \mathfrak{p} \in \operatorname{Ass}_R M$. Then TFAE.

- (1) $\mathcal{R}(\mathcal{M})$ is a sequentially C-M \mathcal{R} -module.
- (2) G(M) is a sequentially C-M G-module, {G(D_i)}_{0≤i≤ℓ} is the dimension filtration of G(M) and a(G(C_i)) < 0 for 1 ≤ ∀i ≤ ℓ.
 When this is the same D'(A4) is a conventially C A4 D' module.

When this is the case, $\mathcal{R}'(\mathcal{M})$ is a sequentially C-M \mathcal{R}' -module.

< 回 ト < 三 ト < 三 ト

Proof of Theorem 4.3

- $\mathcal{R}(\mathcal{M})$ is a sequentially C-M \mathcal{R} -module
- $\iff \mathcal{R}(\mathcal{C}_i)$ is a C-M \mathcal{R} -module for $1 < \forall i < \ell$
- $\iff \mathcal{G}(\mathcal{C}_i)$ is a C-M \mathcal{G} -module, $a(\mathcal{G}(\mathcal{C}_i)) < 0$ for $1 < \forall i < \ell$
- $\iff \mathcal{G}(\mathcal{M})$ is a sequentially C-M \mathcal{G} -module, $\{\mathcal{G}(\mathcal{D}_i)\}_{0 \le i \le \ell}$ is the dimension filtration of $\mathcal{G}(\mathcal{M})$ and $a(\mathcal{G}(\mathcal{C}_i)) < 0$ for $1 < \forall i < \ell$.

Seq C-M property in E^{\natural} Let $R = \sum_{n \ge 0} R_n$ be a \mathbb{Z} -graded ring. We put

$$F_n = \sum_{k \ge n} R_k$$
 for $\forall n \in \mathbb{Z}$.

Then F_n is a graded ideal of R, $\mathcal{F} = \{F_n\}_{n \in \mathbb{Z}}$ is a filtration of ideals of R and $F_1 := R_+ \neq R$.

Let E be a graded R-module with $E_n=(0)$ for $\forall n<0.$ Put

$$E_{(n)} = \sum_{k \ge n} E_k \ \ \text{for} \ \ orall n \in \mathbb{Z}.$$

Then $E_{(n)}$ is a graded *R*-submodule of *E*, $\mathcal{E} = \{E_{(n)}\}_{n \in \mathbb{Z}}$ is an \mathcal{F} -filtration of *R*-submodules of *E*.

Then we have

$$\underline{\underline{R} = \mathcal{G}(\mathcal{F})}_{\text{and}} \text{ and } \underline{\underline{E} = \mathcal{G}(\mathcal{E})}_{\text{and}}.$$

Assumption 5.1

- $R = \sum_{n \ge 0} R_n$ a Noetherian \mathbb{Z} -graded ring
- $E \neq (0)$ a finitely generated graded *R*-module with $d = \dim_R E < \infty$

We set

$$R^{\natural} := \mathcal{R}(\mathcal{F}) \text{ and } E^{\natural} := \mathcal{R}(\mathcal{E}).$$

3

・ 何 ト ・ ヨ ト ・ ヨ ト

Lemma 5.2

Then the following assertions hold true.

- (1) R^{\natural} is a Noetherian ring.
- (2) E^{\natural} is a finitely generated graded R^{\natural} -module.
- (3) $\dim_{\mathcal{R}'} \mathcal{R}'(\mathcal{E}) = \dim_R E + 1.$
- (4) Suppose that $\exists P \in \operatorname{Ass}_R E$ s.t. $\dim R/P = d$, $F_1 \nsubseteq P$. Then $\dim_{R^{\natural}} E^{\natural} = \dim_R E + 1$.

3

Let

$$D_0 = (0) \subsetneq D_1 \subsetneq \ldots \subsetneq D_\ell = E$$

be the dimension filtration of E. We set $C_i = D_i/D_{i-1}$, $d_i = \dim_B D_i$ for $1 < \forall i < \ell$.

Then D_i is a graded *R*-submodule of *E* for $0 < \forall i < \ell$.

Let $1 \le i \le \ell$. Then we get the exact sequence

$$0 \to [D_{i-1}]_{(n)} \to [D_i]_{(n)} \to [C_i]_{(n)} \to 0$$

of graded *R*-modules for $\forall n \in \mathbb{Z}$.

・ 何 ト ・ ヨ ト ・ ヨ ト

Therefore

$$0 \to \mathcal{R}(\mathcal{D}_{i-1}) \to \mathcal{R}(\mathcal{D}_i) \to \mathcal{R}(\mathcal{C}_i) \to 0$$
$$0 \to \mathcal{R}'(\mathcal{D}_{i-1}) \to \mathcal{R}'(\mathcal{D}_i) \to \mathcal{R}'(\mathcal{C}_i) \to 0 \text{ and}$$
$$0 \to \mathcal{G}(\mathcal{D}_{i-1}) \to \mathcal{G}(\mathcal{D}_i) \to \mathcal{G}(\mathcal{C}_i) \to 0$$

of graded modules, where $\mathcal{D}_i = \{[D_i]_{(n)}\}_{n \in \mathbb{Z}}, \ \mathcal{C}_i = \{[C_i]_{(n)}\}_{n \in \mathbb{Z}}.$

Lemma 5.3

 $\{\mathcal{R}'(\mathcal{D}_i)\}_{0 \leq i \leq \ell}$ is the dimension filtration of $\mathcal{R}'(\mathcal{E})$. If $F_1 \nsubseteq \mathfrak{p}$ for $\forall \mathfrak{p} \in \operatorname{Ass}_R E$, then $\{\mathcal{R}(\mathcal{D}_i)\}_{0 \leq i \leq \ell}$ is the dimension filtration of $\mathcal{R}(\mathcal{E})$.

くほと くほと くほと

Proposition 5.4

TFAE. (1) $\mathcal{R}'(\mathcal{E})$ is a sequentially C-M \mathcal{R}' -module. (2) E is a sequentially C-M R-module.

< 回 > < 三 > < 三 >

3

Lemma 5.5

Suppose R_0 is a local ring, E is a C-M R-module, $\exists \mathfrak{p} \in \operatorname{Ass}_R E$ s.t. dim $R/\mathfrak{p} = d$, $\mathfrak{p} \not\supseteq F_1$. Then E^{\natural} is a C-M R^{\natural} -module if and only if a(E) < 0.

Proof (sketch).

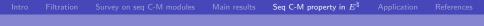
Let $P=\mathfrak{m} R+R_+,$ where \mathfrak{m} denotes the maximal ideal of $R_0.$ Then $P\supseteq F_1$ and

$$E \cong \mathcal{G}(\mathcal{E}) \cong \mathcal{G}(\mathcal{E}_P), \quad R \cong \mathcal{G} \cong \mathcal{G}(R_P)$$

since $R_+(E_{(n)}/E_{(n+1)}) = (0)$, $R_+(F_n/F_{n+1}) = (0)$ for $\forall n \in \mathbb{Z}$. The assertion comes from the above isomorphisms.

3

(日) (周) (三) (三)



Apply Lemma 5.5, we finally get the following.

Theorem 5.6

Suppose that R_0 is a local ring, E is a sequentially C-M R-module and $\mathfrak{p} \not\supseteq F_1$ for $\forall \mathfrak{p} \in \operatorname{Ass}_R E$. Then TFAE. (1) $E^{\mathfrak{q}}$ is a sequentially C-M $R^{\mathfrak{q}}$ -module. (2) $\operatorname{a}(C_i) < 0$ for $1 \leq \forall i \leq \ell$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Application –Stanley-Reisner algebras–

Notation 6.1

- $V = \{1, 2, \dots, n\} \ (n > 0)$ a vertex set
- Δ a simplicial complex on V s.t. $\Delta \neq \emptyset$
- $\mathcal{F}(\Delta)$ a set of facets of Δ

•
$$m = \sharp \mathcal{F}(\Delta) \ (>0)$$
 its cardinality

- $S = k[X_1, X_2, \dots, X_n]$ a polynomial ring over a field k
- $I_{\Delta} = (X_{i_1} X_{i_2} \cdots X_{i_r} \mid \{i_1 < i_2 < \cdots < i_r\} \notin \Delta)$
- $R = k[\Delta] = S/I_{\Delta}$ the Stanley-Reisner ring of Δ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition 6.2

A simplicial complex
$$\Delta$$
 is *shellable*
 $\stackrel{def}{\longleftrightarrow} m = 1 \text{ or } m > 1 \text{ and } \exists F_1, F_2, \dots, F_m \in \mathcal{F}(\Delta) \text{ s.t.}$
(1) $\mathcal{F}(\Delta) = \{F_1, F_2, \dots, F_m\}$
(2) $\langle F_1, F_2, \dots, F_{i-1} \rangle \cap \langle F_i \rangle \text{ is pure and}$
 $\dim \langle F_1, F_2, \dots, F_{i-1} \rangle \cap \langle F_i \rangle = \dim F_i - 1 \text{ for } 2 \leq \forall i \leq m.$

Theorem 6.3 ([St])

If Δ is shellable, then $R = k[\Delta]$ is a sequentially C-M ring.

< 回 > < 三 > < 三 >

3

Remark 6.4

If Δ is shellable, then we can take a shellable numbering $\mathcal{F}(\Delta) = \{F_1, F_2, \dots, F_m\}$ s.t. dim $F_1 \ge \dim F_2 \ge \dots \ge \dim F_m$.

We now regard $R = \sum_{n \geq 0} R_n$ as a \mathbb{Z} -graded ring and put

$$I_n := \sum_{k \ge n} R_k = \mathfrak{m}^n \text{ for } orall n \in \mathbb{Z}$$

where $\mathfrak{m} := R_+ = \sum_{n>0} R_n$. Then $\mathcal{I} = \{I_n\}_{n \in \mathbb{Z}}$ is a \mathfrak{m} -adic filtration of R and $I_1 \neq R$.

Proposition 6.5

If Δ is shellable, then $\mathcal{R}'(\mathfrak{m})$ is a sequentially C-M ring.

(日) (同) (三) (三)

Remark 6.6

$$\mathfrak{p} \not\supseteq I_1 \text{ for } \forall \mathfrak{p} \in \operatorname{Ass} R \iff F \neq \emptyset \text{ for } \forall F \in \mathcal{F}(\Delta) \\ \iff \Delta \neq \{\emptyset\}.$$

Theorem 6.7

Suppose that Δ is shellable with shellable numbering $\mathcal{F}(\Delta) = \{F_1, F_2, \dots, F_m\}$ s.t. dim $F_1 \ge \dim F_2 \ge \dots \ge \dim F_m$ and $\Delta \ne \{\emptyset\}$. Then TFAE.

(1) $\mathcal{R}(\mathfrak{m})$ is a sequentially C-M ring.

(2)
$$m = 1$$
 or $m \ge 2$, then $\dim F_i - 1 > \sharp \mathcal{F}(\Delta_1 \cap \Delta_2)$ for $2 \le \forall i \le m$, where $\Delta_1 = \langle F_1, F_2, \dots, F_{i-1} \rangle$, $\Delta_2 = \langle F_i \rangle$

3

Apply Theorem 6.7, we get the following.

Corollary 6.8 Suppose that dim $F_m > 2$. If $\langle F_1, F_2, \ldots, F_{i-1} \rangle \cap \langle F_i \rangle$ is a simplex for $2 \leq \forall i \leq m$, then $\mathcal{R}(\mathfrak{m})$ is a sequentially C-M ring.

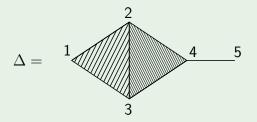
・ 同 ト ・ ヨ ト ・ ヨ ト

Example 6.9

Let $\Delta = \langle F_1, F_2, F_3 \rangle$, where $F_1 = \{1, 2, 3\}$, $F_2 = \{2, 3, 4\}$ and $F_3 = \{4.5\}$. Then Δ is shellable with the numbering $\mathcal{F}(\Delta) = \{F_1, F_2, F_3\}$. Then

$$\langle F_1 \rangle \cap \langle F_2 \rangle, \quad \langle F_1, F_2 \rangle \cap \langle F_3 \rangle$$

are simplex, so that $\mathcal{R}(\mathfrak{m})$ is a sequentially C-M ring.

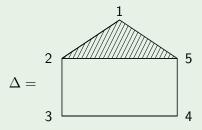


Example 6.10

Let $\Delta = \langle F_1, F_2, F_3, F_4 \rangle$, where $F_1 = \{1, 2, 5\}$, $F_2 = \{2, 3\}$, $F_3 = \{3, 4\}$ and $F_4 = \{4, 5\}$. Then Δ is shellable with the numbering $\mathcal{F}(\Delta) = \{F_1, F_2, F_3, F_4\}$. We put $\Delta_1 = \langle F_1, F_2, F_3 \rangle$, $\Delta_2 = \langle F_4 \rangle$. Then

$$\sharp \mathcal{F}(\Delta_1 \cap \Delta_2) = 2 = \dim F_4 - 1,$$

so that $\mathcal{R}(\mathfrak{m})$ is not a sequentially C-M ring by Theorem 6.7.



Thank you very much for your attention!

Naoki Taniguchi (Meiji University) Sequentially Cohen-Macaulay Rees modules O

3

(日) (同) (三) (三)

References

- [CGT] N. T. Cuong, S. Goto and H. L. Truong, *The equality* $I^2 = \mathfrak{q}I$ *in sequentially Cohen-Macaulay rings*, J. Algebra, **(379)** (2013), 50-79.
- [F] G. Faltings, Über die Annulatoren lokaler Kohomologiegruppen, Archiv der Math., 30 (1978), 473–476.
- [GHS] S. Goto, Y. Horiuchi and H. Sakurai, Sequentially Cohen-Macaulayness versus parametric decomposition of powers of parameter ideals, J. Comm. Algebra, 2 (2010), 37–54.
- [GN] S. Goto and K. Nishida, The Cohen-Macaulay and Gorenstein properties of Rees algebras associated to fltrations, Mem. Amer. Math. Soc., 110 (1994).
- [GW] S. Goto and K. Watanabe, On graded rings, I, J. Math. Soc. Japan, 30 (1978), 179–213.
- [Sch] P. Schenzel, On the dimension filtration and Cohen-Macaulay filtered modules, in: Proc. of the Ferrara Meeting in honour of Mario Fiorentini, University of Antwerp, Wilrijk, Belgium, (1998), 245–264.
- [St] R. P. Stanley, Combinatorics and commutative algebra, Second Edition, Birkhäuser, Boston, 1996.
- [TPDA] N. Taniguchi, T.T. Phuong, N. T. Dung and T. N. An, Sequentially Cohen-Macaulay Rees modules, preprint 2014.

49 / 49

Naoki Taniguchi (Meiji University) Sequentially Cohen-Macaulay Rees modules October 29, 2014