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Introduction
.
[CGT]
..

......

N. T. Cuong, S. Goto and H. L. Truong, The equality I2 = qI in
sequentially Cohen-Macaulay rings, J. Algebra, (379) (2013), 50-79.

In [CGT],

Characterized the sequentially Cohen-Macaulayness of R(I) where I
is an m-primary ideal which contains a good parameter ideal as a
reduction. ([Theorem 5.3]).

.
Question 1.1
..
......When is the Rees module R(M) sequentially Cohen-Macaulay?
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Filtration
Let R be a commutative ring.
.
Definition 2.1
..

......

F = {Fn}n∈Z is a filtration of ideals of R
def⇐⇒
...1 Fn is an ideal of R,
...2 Fn ⊇ Fn+1 for ∀n ∈ Z,
...3 FmFn ⊆ Fm+n for ∀m,n ∈ Z and
...4 F0 = R.

Then we put

R = R(F) =
∑
n≥0

Fnt
n ⊆ R[t], R′ = R′(F) =

∑
n∈Z

Fnt
n ⊆ R[t, t−1].
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Let M be an R-module.
.
Definition 2.2
..

......

M = {Mn}n∈Z is an F -filtration of R-submodules of M
def⇐⇒
...1 Mn is an R-submodule of M ,
...2 Mn ⊇Mn+1 for ∀n ∈ Z,
...3 FmMn ⊆Mm+n for ∀m,n ∈ Z and
...4 M0 =M .

We set

R(M) =
∑
n≥0

tn ⊗Mn ⊆ R[t]⊗R M,

R′(M) =
∑
n∈Z

tn ⊗Mn ⊆ R[t, t−1]⊗R M.
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Here
tn ⊗Mn = {tn ⊗ x | x ∈Mn} ⊆ R[t, t−1]⊗R M

for ∀n ∈ Z.

If F1 ̸= R, then we put

G = G(F) = R′/uR′, G(M) = R′(M)/uR′(M)

where u = t−1.
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For the rest of this section, we assume F1 ̸= R.
.
Lemma 2.3
..

......

Suppose R is Noetherian and M is finitely generated. Then TFAE.

(1) R(M) is a finitely generated graded R-module.

(2) R′(M) is a finitely generated graded R′-module.

(3) ∃n1, n2, . . . , nℓ ≥ 0 (ℓ > 0) s.t. Mn =
∑ℓ

i=1 Fn−ni
Mni

for
∀n ≥ max{n1, n2, . . . , nℓ}.
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.

......

The composite map

ψ : R(M)
i−→ R′(M)

ε−→ G(M)

is surjective and

Kerψ = uR′(M) ∩R(M) = u[R(M)]+,

where [R(M)]+ =
∑

n>0 t
n ⊗Mn.

Naoki Taniguchi (Meiji University) Sequentially Cohen-Macaulay Rees modules October 29, 2014 8 / 49



. . . . . .

Intro Filtration Survey on seq C-M modules Main results Seq C-M property in E♮ Application References

.
Assumption 2.4
..

......

R(F) a Noetherian ring

R(M) a finitely generated R-module

Then R is Noetherian and M is finitely generated.
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.
Proposition 2.5
..

......

The following assertions hold true.

(1) Let P ∈ AssR R(M). Then p ∈ AssRM , P = pR[t] ∩R and

dimR/P =

{
dimR/p+ 1 if dimR/p <∞, F1 ⊈ p,
dimR/p otherwise,

where p = P ∩R.
(2) Suppose M ̸= (0), d = dimRM <∞ and ∃p ∈ AssRM s.t.

dimR/p = d, F1 ⊈ p. Then dimR R(M) = d+ 1.
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.
Proof.
..

......

(1) Let P ∈ AssR R(M). Then P ∈ AssRR[t]⊗R M , so that
P = Q ∩R for some

Q ∈ AssR[t]R[t]⊗R M =
∪

p∈AssR M

AssR[t]R[t]/pR[t].

Thus p = Q ∩R and Q = pR[t] for ∃p ∈ AssRM . Therefore

P = pR[t] ∩R, p = P ∩R.

Let R = R/p. Then F = {FnR}n∈Z is a filtration of ideals of R and

R/P ∼= R(F)

as graded R-algebras.
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.
Corollary 2.6
..

......

Suppose R is local, M ̸= (0). Then

dimRR(M) =

{
d+ 1 if ∃p ∈ AssRM s.t. dimR/p = d, F1 ⊈ p,
d otherwise,

where d = dimRM .

.
Proposition 2.7
..

......

The following assertions hold true.

(1) Let P ∈ AssR′ R′(M). Then p ∈ AssRM , P = pR[t, t−1] ∩R′

and dimR′/P = dimR/p+ 1, where p = P ∩R.
(2) Suppose M ̸= (0). Then dimR′ R′(M) = dimRM + 1.
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.
Lemma 2.8
..

......

Suppose that R is a local ring, M ̸= (0). Then G(M) ̸= (0) and
dimG G(M) = dimRM .

.
Proof.
..

......

Let N be a unique graded maximal ideal of an H-local ring R′. Then
R′(M)N ̸= (0) and u ∈ N. Therefore G(M)N ̸= (0), so that
G(M) ̸= (0). Hence dimG G(M) = dimRM .
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Survey on sequentially C-M modules

Let R be a Noetherian ring and M ̸= (0) a finitely generated
R-module with d = dimRM <∞. We put

AsshRM = {p ∈ SuppRM | dimR/p = d}.

Then ∀n ∈ Z, ∃Mn the largest R-submodule of M with dimR Mn ≤ n.

Let

S(M) = {dimRN | N is an R-submodule of M,N ̸= (0)}
= {dimR/p | p ∈ AssRM}
= {d1 < d2 < · · · < dℓ = d}

where ℓ = ♯S(M).
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Let Di =Mdi for 1 ≤ ∀i ≤ ℓ. We then have a filtration

D : D0 := (0) ⊊ D1 ⊊ D2 ⊊ . . . ⊊ Dℓ =M

which we call the dimension filtration of M . Put Ci = Di/Di−1 for
1 ≤ ∀i ≤ ℓ.

.
Definition 3.1 ([Sch, St])
..

......

(1) M is a sequentially Cohen-Macaulay R-module
def⇐⇒ Ci is a C-M R-module for 1 ≤ ∀i ≤ ℓ.

(2) R is a sequentially Cohen-Macaulay ring
def⇐⇒ dimR <∞ and R is a sequentially C-M module over itself.
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Let
(0) =

∩
p∈AssR M

M(p)

be a primary decomposition of (0) in M , where AssRM/M(p) = {p}
for ∀p ∈ AssRM .

.
Fact 3.2 ([Sch])
..

......

The following assertions hold true.

(1) Di =
∩

dimR/p≥di+1
M(p) for 0 ≤ ∀i < ℓ.

(2) AssR Ci = {p ∈ AssRM | dimR/p = di} and
AssRDi = {p ∈ AssRM | dimR/p ≤ di} for 1 ≤ ∀i ≤ ℓ.
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.
Theorem 3.3 ([GHS])
..

......

Let M = {Mi}0≤i≤t (t > 0) be a family of R-submodules of M s.t.

(1) M0 = (0) ⊊M1 ⊊M2 ⊊ . . . ⊊Mt =M and

(2) dimRMi−1 < dimRMi for 1 ≤ ∀i ≤ t.

Assume that AssRMi/Mi−1 = AsshRMi/Mi−1 for 1 ≤ ∀i ≤ t. Then
t = ℓ and Mi = Di for 0 ≤ ∀i ≤ ℓ.
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.
Proposition 3.4 (NZD characterization)
..

......

Let (R,m) be a Noetherian local ring, M ̸= (0) a finitely generated
R-module. Let x ∈ m be a NZD on M . Then TFAE.

(1) M is a sequentially C-M R-module.

(2) M/xM is a sequentially C-M R/(x)-module and {Di/xDi}0≤i≤ℓ

is the dimension filtration of M/xM .

.
Proof.
..

......

Since x ∈ m is a NZD on Ci and on Di for 1 ≤ ∀i ≤ ℓ, so that we
get a filtration

D0/xD0 = (0) ⊊ D1/xD1 ⊊ · · · ⊊ Dℓ/xDℓ =M/xM.
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.
Remark 3.5
..

......

The implication (2) ⇒ (1) is not true without the condition that
{Di/xDi}0≤i≤ℓ is the dimension filtration of M/xM .

For example, let R be a 2-dimensional Noetherian local domain of
depth 1 (Nagata’s bad example). Then R/(x) is sequentially C-M for
x ̸= 0, but R is not sequentially C-M.

This example shows that [Sch, Theorem 4.7] is not true in general.
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Main results
.
Notation 4.1
..

......

(R,m) a Noetherian local ring

M ̸= (0) a finitely generated R-module with d = dimR M

F = {Fn}n∈Z a filtration of ideals of R s.t. F1 ̸= R

M = {Mn}n∈Z an F-filtration of R-submodules of M

a = R(F)+ =
∑

n>0 Fnt
n

M a unique graded maximal ideal of R

R = R(F) a Noetherian ring

R(M) a finitely generated R-module
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Let 1 ≤ i ≤ ℓ. We set

Di = {Mn ∩Di}n∈Z, Ci = {[(Mn ∩Di) +Di−1]/Di−1}n∈Z.

Then Di (resp. Ci) is an F-filtration of R-submodules of Di (resp. Ci).
Look at the exact sequence

0 → [Di−1]n → [Di]n → [Ci]n → 0

of R-modules for ∀n ∈ Z. We then have

0 → R(Di−1) → R(Di) → R(Ci) → 0

0 → R′(Di−1) → R′(Di) → R′(Ci) → 0 and

0 → G(Di−1) → G(Di) → G(Ci) → 0.
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.
Theorem 4.2
..

......

TFAE.

(1) R′(M) is a sequentially C-M R′-module.

(2) G(M) is a sequentially C-M G-module and {G(Di)}0≤i≤ℓ is the dimension
filtration of G(M).

When this is the case, M is a sequentially C-M R-module.

.
Theorem 4.3
..

......

Suppose that M is a sequentially C-M R-module and F1 ⊈ p for ∀p ∈ AssR M .
Then TFAE.

(1) R(M) is a sequentially C-M R-module.

(2) G(M) is a sequentially C-M G-module, {G(Di)}0≤i≤ℓ is the dimension
filtration of G(M) and a(G(Ci)) < 0 for 1 ≤ ∀i ≤ ℓ.

When this is the case, R′(M) is a sequentially C-M R′-module.
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.
Lemma 4.4 (cf. [CGT])
..

......

{R′(Di)}0≤i≤ℓ is the dimension filtration of R′(M). If F1 ⊈ p for
∀p ∈ AssRM , then {R(Di)}0≤i≤ℓ is the dimension filtration of
R(M).

.
Proof.
..

......

Look at the filtration

R′(D0) = (0) ⊊ R′(D1) ⊊ R′(D2) ⊊ · · · ⊊ R′(Dℓ) = R′(M).

Then dimR′ R′(Di) = di + 1. Let P ∈ AssR′ R′(Ci). Then we have

dimR′/P = di + 1 = dimR′ R′(Ci)

by Proposition 2.7. Therefore {R′(Di)}0≤i≤ℓ is the dimension filtration of
R′(M).

Naoki Taniguchi (Meiji University) Sequentially Cohen-Macaulay Rees modules October 29, 2014 23 / 49



. . . . . .

Intro Filtration Survey on seq C-M modules Main results Seq C-M property in E♮ Application References

Proof of Theorem 4.2

Look at the exact sequence

0 → R′(Ci) → R[t, t−1]⊗R Ci → X → 0

of graded R′-modules for 1 ≤ i ≤ ℓ.

Since R′(Ci) is C-M and Xu = (0), we have R[t, t−1]⊗R Ci is C-M.

Therefore M is sequentially C-M, because Ci is C-M.
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Towards a proof of Theorem 4.3

.
Fact 4.5 ([F])
..

......

Let I be an ideal of R and t ∈ Z. Consider the following two
conditions.

(1) ∃ℓ > 0 s.t. Iℓ·Hi
m(M) = (0) for ∀i ̸= t.

(2) Mp is a C-M Rp-module and t = dimRp Mp + dimR/p for
∀p ∈ SuppRM but p ⊉ I.

Then the implication (1) ⇒ (2) holds true. The converse holds, if R
is a homomorphic image of a Gorenstein local ring.
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.
Lemma 4.6 (Key lemma)
..

......

Suppose that Hi
M(G(M)) is finitely graded for ∀i ̸= d. Then

Hi
M(R(M)) is finitely graded for ∀i ̸= d+ 1.

.
Proof of Lemma 4.6
..

......

It is enough to show that

∃ℓ > 0 s.t. aℓ·Hi
M(R(M)) = (0) for i ̸= d+ 1.

To see this, let P ∈ SuppR R(M) s.t. P ⊉ a and P ⊆ M.

Put L = ua = uR′ ∩R.
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Proof of Lemma 4.6

.
Fact 4.7
..

......
√
P ∗ + L ⊉ a.

Therefore ∃Q ∈ MinR R/[P ∗ + L] s.t a ⊈ Q ⊆ M. Then we can
show that G(M)Q is C-M,

d = dimRQ
G(M)Q + dimRM/QRM.

Hence R(M)Q is C-M and

d+ 1 = dimRQ
R(M)Q + dimRM/QRM.
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Proof of Lemma 4.6

Since P ∗ ⊆ Q, R(M)P ∗ is C-M, so is R(M)P . We also have

d+ 1 = dimRP
R(M)P + dimRM/PRM.

Thanks to Fact 4.5, ∃ℓ > 0 s.t.

aℓ·Hi
M(R(M)) = (0) for i ̸= d+ 1

which shows Hi
M(R(M)) is finitely graded.
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We set
a(N) = max{n ∈ Z | [Ht

M(N)]n ̸= (0)}

for a finitely generated graded R-module N of dimension t, and call
it the a-invariant of N ([GW]).

.
Theorem 4.8
..

......

TFAE.

(1) R(M) is a C-M R-module and dimR R(M) = d+ 1.

(2) Hi
M(G(M)) = [Hi

M(G(M))]−1 for ∀i < d and a(G(M)) < 0.

When this is the case, [Hi
M(G(M))]−1

∼= Hi
m(M) for ∀i < d.
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.
Corollary 4.9
..

......

Suppose that M is a C-M R-module. Then TFAE.

(1) R(M) is a C-M R-module and dimR R(M) = d+ 1.

(2) G(M) is a C-M G-module and a(G(M)) < 0.

Naoki Taniguchi (Meiji University) Sequentially Cohen-Macaulay Rees modules October 29, 2014 30 / 49



. . . . . .

Intro Filtration Survey on seq C-M modules Main results Seq C-M property in E♮ Application References

.
Theorem 4.3
..

......

Suppose that M is a sequentially C-M R-module and F1 ⊈ p for
∀p ∈ AssRM . Then TFAE.

(1) R(M) is a sequentially C-M R-module.

(2) G(M) is a sequentially C-M G-module, {G(Di)}0≤i≤ℓ is the
dimension filtration of G(M) and a(G(Ci)) < 0 for 1 ≤ ∀i ≤ ℓ.

When this is the case, R′(M) is a sequentially C-M R′-module.
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Proof of Theorem 4.3

R(M) is a sequentially C-M R-module

⇐⇒ R(Ci) is a C-M R-module for 1 ≤ ∀i ≤ ℓ

⇐⇒ G(Ci) is a C-M G-module, a(G(Ci)) < 0 for 1 ≤ ∀i ≤ ℓ

⇐⇒ G(M) is a sequentially C-M G-module, {G(Di)}0≤i≤ℓ is the
dimension filtration of G(M) and a(G(Ci)) < 0 for 1 ≤ ∀i ≤ ℓ.
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Seq C-M property in E♮

Let R =
∑

n≥0Rn be a Z-graded ring. We put

Fn =
∑
k≥n

Rk for ∀n ∈ Z.

Then Fn is a graded ideal of R, F = {Fn}n∈Z is a filtration of ideals of R
and F1 := R+ ̸= R.
Let E be a graded R-module with En = (0) for ∀n < 0. Put

E(n) =
∑
k≥n

Ek for ∀n ∈ Z.

Then E(n) is a graded R-submodule of E, E = {E(n)}n∈Z is an
F-filtration of R-submodules of E.
Then we have

R = G(F) and E = G(E).
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.
Assumption 5.1
..

......

R =
∑

n≥0Rn a Noetherian Z-graded ring

E ̸= (0) a finitely generated graded R-module with
d = dimRE <∞

We set
R♮ := R(F) and E♮ := R(E).
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.
Lemma 5.2
..

......

Then the following assertions hold true.

(1) R♮ is a Noetherian ring.

(2) E♮ is a finitely generated graded R♮-module.

(3) dimR′ R′(E) = dimRE + 1.

(4) Suppose that ∃P ∈ AssRE s.t. dimR/P = d, F1 ⊈ P . Then
dimR♮ E♮ = dimRE + 1.
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Let
D0 = (0) ⊊ D1 ⊊ . . . ⊊ Dℓ = E

be the dimension filtration of E. We set Ci = Di/Di−1,
di = dimRDi for 1 ≤ ∀i ≤ ℓ.

Then Di is a graded R-submodule of E for 0 ≤ ∀i ≤ ℓ.

Let 1 ≤ i ≤ ℓ. Then we get the exact sequence

0 → [Di−1](n) → [Di](n) → [Ci](n) → 0

of graded R-modules for ∀n ∈ Z.
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Therefore
0 → R(Di−1) → R(Di) → R(Ci) → 0

0 → R′(Di−1) → R′(Di) → R′(Ci) → 0 and

0 → G(Di−1) → G(Di) → G(Ci) → 0

of graded modules, where Di = {[Di](n)}n∈Z, Ci = {[Ci](n)}n∈Z.

.
Lemma 5.3
..

......

{R′(Di)}0≤i≤ℓ is the dimension filtration of R′(E). If F1 ⊈ p for
∀p ∈ AssRE, then {R(Di)}0≤i≤ℓ is the dimension filtration of R(E).
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.
Proposition 5.4
..

......

TFAE.

(1) R′(E) is a sequentially C-M R′-module.

(2) E is a sequentially C-M R-module.

Naoki Taniguchi (Meiji University) Sequentially Cohen-Macaulay Rees modules October 29, 2014 38 / 49



. . . . . .

Intro Filtration Survey on seq C-M modules Main results Seq C-M property in E♮ Application References

.
Lemma 5.5
..

......

Suppose R0 is a local ring, E is a C-M R-module, ∃p ∈ AssRE s.t.
dimR/p = d, p ⊉ F1. Then E

♮ is a C-M R♮-module if and only if
a(E) < 0.

.
Proof (sketch).
..

......

Let P = mR +R+, where m denotes the maximal ideal of R0. Then
P ⊇ F1 and

E ∼= G(E) ∼= G(EP ), R ∼= G ∼= G(RP )

since R+(E(n)/E(n+1)) = (0), R+(Fn/Fn+1) = (0) for ∀n ∈ Z.
The assertion comes from the above isomorphisms.

Naoki Taniguchi (Meiji University) Sequentially Cohen-Macaulay Rees modules October 29, 2014 39 / 49



. . . . . .

Intro Filtration Survey on seq C-M modules Main results Seq C-M property in E♮ Application References

Apply Lemma 5.5, we finally get the following.

.
Theorem 5.6
..

......

Suppose that R0 is a local ring, E is a sequentially C-M R-module
and p ⊉ F1 for ∀p ∈ AssRE. Then TFAE.

(1) E♮ is a sequentially C-M R♮-module.

(2) a(Ci) < 0 for 1 ≤ ∀i ≤ ℓ.
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Application –Stanley-Reisner algebras–

.
Notation 6.1
..

......

V = {1, 2, . . . , n} (n > 0) a vertex set

∆ a simplicial complex on V s.t. ∆ ̸= ∅

F(∆) a set of facets of ∆

m = ♯F(∆) (> 0) its cardinality

S = k[X1, X2, . . . , Xn] a polynomial ring over a field k

I∆ = (Xi1Xi2 · · ·Xir | {i1 < i2 < · · · < ir} /∈ ∆)

R = k[∆] = S/I∆ the Stanley-Reisner ring of ∆
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.
Definition 6.2
..

......

A simplicial complex ∆ is shellable
def⇐⇒ m = 1 or m > 1 and ∃F1, F2, . . . , Fm ∈ F(∆) s.t.

(1) F(∆) = {F1, F2, . . . , Fm}
(2) ⟨F1, F2, . . . , Fi−1⟩ ∩ ⟨Fi⟩ is pure and

dim ⟨F1, F2, . . . , Fi−1⟩ ∩ ⟨Fi⟩ = dimFi − 1 for 2 ≤ ∀i ≤ m.

.
Theorem 6.3 ([St])
..
......If ∆ is shellable, then R = k[∆] is a sequentially C-M ring.
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.
Remark 6.4
..

......

If ∆ is shellable, then we can take a shellable numbering
F(∆) = {F1, F2, . . . , Fm} s.t. dimF1 ≥ dimF2 ≥ · · · ≥ dimFm.

We now regard R =
∑

n≥0Rn as a Z-graded ring and put

In :=
∑
k≥n

Rk = mn for ∀n ∈ Z

where m := R+ =
∑

n>0Rn. Then I = {In}n∈Z is a m-adic filtration
of R and I1 ̸= R.
.
Proposition 6.5
..
......If ∆ is shellable, then R′(m) is a sequentially C-M ring.
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.
Remark 6.6
..

......

p ⊉ I1 for ∀p ∈ AssR ⇐⇒ F ̸= ∅ for ∀F ∈ F(∆)

⇐⇒ ∆ ̸= {∅}.

.
Theorem 6.7
..

......

Suppose that ∆ is shellable with shellable numbering
F(∆) = {F1, F2, . . . , Fm} s.t. dimF1 ≥ dimF2 ≥ · · · ≥ dimFm

and ∆ ̸= {∅}. Then TFAE.

(1) R(m) is a sequentially C-M ring.

(2) m = 1 or m ≥ 2, then dimFi − 1 > ♯F(∆1 ∩∆2) for
2 ≤ ∀i ≤ m, where ∆1 = ⟨F1, F2, . . . , Fi−1⟩, ∆2 = ⟨Fi⟩.
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Apply Theorem 6.7, we get the following.

.
Corollary 6.8
..

......

Suppose that dimFm > 2. If ⟨F1, F2, . . . , Fi−1⟩ ∩ ⟨Fi⟩ is a simplex
for 2 ≤ ∀i ≤ m, then R(m) is a sequentially C-M ring.
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.
Example 6.9
..

......

Let ∆ = ⟨F1, F2, F3⟩, where F1 = {1, 2, 3}, F2 = {2, 3, 4} and
F3 = {4.5}. Then ∆ is shellable with the numbering
F(∆) = {F1, F2, F3}. Then

⟨F1⟩ ∩ ⟨F2⟩ , ⟨F1, F2⟩ ∩ ⟨F3⟩

are simplex, so that R(m) is a sequentially C-M ring.

∆ =
1 4 5

2

3
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.
Example 6.10
..

......

Let ∆ = ⟨F1, F2, F3, F4⟩, where F1 = {1, 2, 5}, F2 = {2, 3}, F3 = {3, 4}
and F4 = {4, 5}. Then ∆ is shellable with the numbering
F(∆) = {F1, F2, F3, F4}. We put ∆1 = ⟨F1, F2, F3⟩, ∆2 = ⟨F4⟩. Then

♯F(∆1 ∩∆2) = 2 = dimF4 − 1,

so that R(m) is not a sequentially C-M ring by Theorem 6.7.

1

2

3 4

5

∆ =
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Thank you very much for your attention!
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